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Ferdinand Hahmanna, Gordon Böera, Eric Gabriela, Thomas M. Desernob, Carsten Meyera,c,
and Hauke Schramma,c

aKiel University of Applied Sciences, Germany
bRWTH Aachen University, Germany

cChristian-Albrechts University Kiel, Germany

ABSTRACT

This paper presents a general framework for object localization in medical (and non-medical) images. In partic-
ular, we focus on objects of well-defined shape, like epiphyseal regions in hand-radiographs, which are localized
based on a voting framework using the Generalized Hough Transform (GHT). We suggest to combine the GHT
voting with a classifier which rates the voting characteristics of the GHT model at individual Hough cells. Specif-
ically, a Random Forest Classifier rates whether the model points, voting for an object position, constitute a
regular shape or not, and this measure is combined with the GHT votes. With this technique, we achieve a
success rate of 99.4% for localizing 12 epiphyseal regions of interest in 412 hand- radiographs. The mean error is
6.6 pixels on images with a mean resolution of 1185× 2006 pixels. Furthermore, we analyze the influence of the
radius of the local neighborhood which is considered in analyzing the voting characteristics of a Hough cell.

Keywords: Epiphyses Localization, Localization, Detection, Discriminative Generalized Hough Transform,
DGHT, GHT, Shape Consistency Measure, Bone Age Assessment

1. INTRODUCTION

Bone Age Assessment (BAA) is an important method in diagnostic radiology which is used for evaluating
the skeletal maturity in order to diagnose growth disorders in children and adolescents. Since manual BAA
techniques (e.g. Tanner & Whitehouse (TW)1) are time consuming, subjective, and require expert knowledge
from a physician a number of automatic methods have been developed in recent years. Many of these approaches
follow the basic concept of TW, classifying only certain extracts from the radiograph, as this substantially
reduces the complexity of the classification problem. An important prerequisite for BAA is the availability of
a reliable and robust object detection method to enable the extraction of the required region-of-interest (ROI).
This task can be solved by individually adjusted methods with heavy usage of expert knowledge about the
searched objects. For instance Hsieh et al.2 and Pietka et al.3 analyze the image columns and search for bright
lines representing the bones of the fingers (phalanges). More general solutions are presented in Thodberg et al.,4

which uses active appearance models for bone reconstruction, and Fischer et al.,5 where a graph-based structural
prototype, representing the phalanges and metacarpal bones, is registered to the image.

In this paper, we employe a general object detection framework, using the idea of the Generalized Hough
Transform6 (GHT). The concept is to model an object by feature points, which describe different object parts,
e.g. based on edge or salient point detection or image patch classification, in relation to the target landmark.
To analyze an image with a given model, the utilized features are extracted and vote with corresponding model
points for hypothetical target point locations in a transformation parameter space called Hough space.

A voting-based procedure is also the basis of some current, robust object detection methods, like Hough
Forests.7 The basic idea is to use a Random Forest to determine the displacement vector from an image patch
in order to obtain the target landmark. The Random Forest is generated based on image patch / displacement
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vector pairs learned from training data, such that similar image patches, describing comparable object parts,
yield similar displacement vectors. This idea is often used for various tasks of medical image processing,8,9

including the epiphyses detection.10,11

The Discriminative Generalized Hough Transform (DGHT), used in this paper, is also based on the GHT.
Whereas the Hough Forests use a quite complex feature extraction algorithm, namely the image patch extrac-
tion, the DGHT has up to now only been explored using simple (e.g. edge) features but with a sophisticated
discriminative training procedure for the model generation.

Voting-based approaches have, in general, the drawback of an independent treatment of individual model
points. This may pose a problem if the object to localize appears in different variants, e.g. the epiphyseal
distance on left hand-radiographs resulting from different patient ages. If these variants are used to generate a
single voting model, image patches or edges, representing different object variants, could incidentally vote for
the same Hough cell, which may result in false-positive object localization. To handle this drawback, the original
GHT implementation applies linear model transformations and Hough space splitting to address target object
variability rather than using a model containing different variants.

Another possible solution, which can also be applied for non-linear model transformations, is to train separate
models for the observed object variants. This can be achieved by grouping the training images into variation
classes, e.g. by manually defined criteria, such as head pose,12 size13 or depth information,14 but also automatic
grouping procedures15,16 have been presented in the past.

An alternative is to train possible object variants into a single model, and to use the pattern of model points
voting for a particular Hough cell for further assessments such as segmentation,17 comparison with training
images,18 or using a classifier for rating whether the pattern represents a coherent variability class or not.19

Here, the GHT voting pattern for a localization hypothesis is analyzed by a Random Forest Classifier20 to
generate a Shape Consistency Measure (SCM) which is used to assign a score, representing the coherence of the
model points voting for a Hough cell. The aim of this score is to assign low weights to Hough cells whose votes
do not represent a coherent object variant. This prevents false positives originating from mutually exclusive
object variants. In this paper, we apply our object localization technique consisting of DGHT and SCM to a
medical image processing task, namely epiphysis localization in hand-radiographs. Furthermore, we analyze the
influence of the size of the local neighborhood which is considered in the assessment of the voting pattern of a
Hough cell on the localization performance.

2. METHOD

2.1 Generalized Hough Transform

The Generalized Hough Transform (GHT), introduced by Ballard in 1981,6 is a general and well-known model-
based approach for object localization, which belongs to the category of template-matching techniques. Each
model point mj is represented by a displacement vector to the reference point.

The GHT transforms a feature image, in our case an edge image, into a parameter space, called Hough
space, utilizing a simple voting procedure. The Hough space consists of accumulator cells (Hough cells), repre-
senting possible target point locations and, potentially, shape model transformations. The number of votes per
accumulator cell reflects the degree of matching between the (transformed) model and the feature image.

Since each additional parameter in a model transformation directly increases the computational complexity
of the algorithm, we restrict the model transformation to a simple translation in this work. Moderate object
variability with respect to shape, size, and rotation is not explicitly parameterized, but implicitly learned into
the model by appropriately placing model points as indicated by the training data.

The voting procedure, which transforms a feature image Xn into the Hough space H (with discrete elements
ci) by using the shape model M, can be described by

H(ci,M,Xn) =

|M|∑
j=1

fj(ci,Xn) (1)



with∗

fj(ci,Xn) =
∑
∀el∈Xn

{
1, if ci = b(el −mj)/%c and |φel − φmj

| < ∆ϕ.

0, otherwise.
(2)

The quantized Hough space H (with quantization parameter %) consists of Hough cells ci that accumulate
the number of matching pairs of all model points mj and feature points el. Each Hough cell ci represents a
target hypothesis whose coordinates in image space are given by b(ci + 0.5) · %c.

fj(ci,Xn) determines how often model point mj votes for Hough cell ci for the given feature image Xn.
However, a voting is only possible, if the orientation of the model and feature point, φmj and φel , respectively,
has a small difference of below ∆ϕ. Then, the displacement vector of model point mj is subtracted from the edge
point coordinates el, and the resulting vector points to a potential location of the target point which generates
a vote for the corresponding Hough cell ci (in units of the quantization parameter %).

The most likely target point location results from the Hough cell c̃n with the highest number of votes,
corresponding to the best match between the model M and the feature image Xn:

c̃n = arg max
ci

H(ci,M,Xn) (3)

2.2 Discriminative Generalized Hough Transform

The Discriminative Generalized Hough Transform (DGHT) extends the Generalized Hough Transform by dis-
criminatively trained model point specific weights λj that reflect their importance for a correct localization and
discrimination from confusable objects. These weights, which may also be negative, are incorporated as follows
into the voting procedure (1):

H(ci,M,Xn) =

|M|∑
j=1

λjfj(ci,Xn) (4)

The optimization of λj is based on a Minimum Classification Error training,21,22 which aims at minimizing the
sum of localization errors over all training images.

In GHT-based approaches, the quality of the localization highly depends on the quality of the model. A good
model has to fulfill two important conditions: A high correlation with the feature image on the target point
location and a small correlation with confusable objects. In the DGHT, this is achieved by an iterative training
procedure. It starts with an initial model that is generated by superimposing annotated feature images at the
reference point. The model point weights λj are optimized using a Minimum Classification Error approach, and
model points with a low absolute weight are eliminated. At last, the model is extended by target structures
from training images which still have a high localization error. This procedure is repeated until all training
images are used or have a low localization error. A more detailed description of the technique can be found in
Ruppertshofen.22

Although this optimization reduces the model fuzziness by focusing on comparably few key model points, the
technique can only be applied for target objects with limited variability since the final DGHT model contains
model points from different, and possibly mutually exclusive, variants and a common voting of these model
points can still occur.

2.3 Shape Consistency Measure (SCM)

In order to handle the problem of false-positives that are induced by unlikely model point combinations, the
Hough votes of a localization hypothesis are analyzed to determine whether they stem from a coherent object
variant, observed in the training data. To this end, a Shape Consistency Measure is introduced that assesses the
GHT voting pattern, described as F (ci,Xn) = {f1(ci,Xn), f2(ci,Xn), ..., f|M|(ci,Xn)}, as an expected (regular)
or irregular (non-coherent) pattern.

∗bac denotes the floor of each component of a.



Since each individual localization hypothesis contains votes from a comparably small set of model points,
the voting pattern in each cell may be partly coincidental.19 To overcome this issue, it is reasonable to consider
the common voting behavior of model points for a Hough cell and its neighborhood within a certain distance.
However, in case of a too large neighborhood, the set of model points loses its explanatory power. Thus, treating
all model points voting in a fixed neighborhood, its size would be an important parameter. To avoid that, we
define a feature function, which captures the closest distance of a vote of model point mj in a given neighborhood
area of cell ci as

rj(ci,Xn) = min
ck

{
d(ci, ck), if fj(ck,Xn) ≥ 1 and d(ci, ck) ≤ ϑ
ϑ+ 1, otherwise.

(5)

with d(a,b) = maxt|at − bt|. Thus, a value α = rj(ci,Xn) ≤ ϑ specifies the minimum neighborhood of
(2α+ 1)× (2α+ 1) around ci in which the model point mj has voted. In rj we also introduce a new parameter
ϑ. But as long as ϑ > 4 the exact choice is only relevant for runtime performance, as we will show in Section 5.
With the feature function rj(ci,Xn) the GHT voting pattern is extended by

R(ci,Xn) = {r1(ci,Xn), r2(ci,Xn), ..., rJ(ci,Xn)} (6)

containing information about the voting behavior in cell ci and its neighborhood.

The vector R(ci,Xn) is used as feature vector to discriminate two classes: Class Ωr comprises feature vectors
describing ”regular” voting patterns belonging to true object positions, class Ωi contains feature vectors origi-
nating from ”irregular (non-coherent)” voting patterns, expected at false positive locations. However, instead of
a pure two-class classification, the Random Forest Classifier determines the posterior probability p(Ωr|R(ci,Xn))
to belong to class Ωr, given the attribute vector R(ci,Xn). We use this probability as an additional factor to
weight the votes in Hough space, such that Hough votes from irregular voting patterns are downweighted by a
small posterior probability p(Ωr|R(ci,Xn)):

c̃n = arg max
ci

p(Ωr|R(ci,Xn)) · H(ci,M,Xn). (7)

In summary, during the training of the SCM, a previously generated DGHT model is applied to all training
images. For each image, we select the 50 hypotheses with the highest votes, which will be used as training samples
for the Random Forest Classifier. For these hypotheses, the feature vector R(ci,Xn) is generated according to
Equation (6). To determine the class label, we use the Euclidean distance ε(ci, ĉn) = ‖ci, ĉn‖2 between the
hypothesis in question ci and the ground truth localization ĉn. Hypotheses with an error less or equal 3 Hough
cells are regular structures and determined as class Ωr wheres as hypotheses with an error larger than 10 Hough
cells are from class Ωi (irregular shape). Hypotheses with an error between 3 and 10 Hough cells are not
considered during training to ensure a better discrimination between both classes. Then, the Random Forest
Classifier is trained as described in Breiman,20 to separate the two classes Ωr and Ωi (Figure 1).

For localizing the target object in an unknown image, at first the DGHT model is applied. Then for the 50
hypotheses with the highest DGHT-Votes, the feature vector R(ci,Xn), generated according to Equation (6), is
used as input into the previously trained Random Forest Classifier. This determines the posterior probability
p(Ωr|R(ci,Xn)) that the hypothesis in question belongs to class Ωr, i.e. that it is the target object. Finally,
according to Equation (7) the best localization hypothesis is selected as the estimated target landmark (Figure 2).

3. EXPERIMENTS

We evaluated the SCM on an inhouse corpus from the University Hospital RWTH Aachen consisting of 812
unnormalized hand-radiographs with an average size of 1185× 2066 pixel. The age of the subjects ranged from
3 to 19 years and the objective was the localization of the 12 epiphyses, illustrated in Fig. 3. 400 images were
randomely selected to train the DGHT-Model as well as the Random Forest for the SCM. The remaining 412
images constituted the evaluation corpus.

In order to speed up the process and to increase the localization performance we used a multi-level localization
approach with two zoom levels.23,24 In the first level, the image resolution was reduced to one-eighth ensuring a



Figure 1. Scheme of the SCM training procedure: For each image Xn, the feature vectors and corresponding class labels
from the 50 best DGHT hypotheses constitute the training samples for training the Random Forest Classifier. Note, that
hypotheses with an error between 3 and 10 Hough cells are not considered for the Random Forest training.

RF

Figure 2. Scheme of the SCM test procedure: For an unknown test image Xn, the feature vectors R(ci,Xn)) from the
50 best DGHT hypotheses are fed into the Random Forest Classifier which determines p(Ωr|R(ci,Xn)). Note, the used
DGHT model M is the same as during the training procedure (see Figure 1).

robust albeit coarse localization. Subsequently an image extract of 192× 256 pixels with the original resolution
was selected around the detected point and used for a more accurate localization in the second level. Thus, the
size of the image extract was large enough to compensate small errors from the first level but also small enough
to exclude confusable objects like other epiphyses.

For both zoom levels as well as for each epiphysis we train a specific DGHT model by using the iterative
training procedure, described in Ruppertshofen.22 Thus, in total 24 different DGHT models were generated.
These models were restricted to a maximum of 4000 model points, which is a good trade-off between capturing
the main structures of the target while avoiding model points with negligible influence increasing only the
processing time.

Since the Random Forest, implementing the SCM, is related to the voting pattern of a DGHT model, a
separate Random Forest has to be trained for each of the 24 DGHT models. Each trained Random Forest
consists of 500 unpruned trees. Since the Random Forest training involves a random component, also the results
are partly coincidental. Therefore, all experiments, involving the SCM, were performed four times, and we report
the mean and standard deviation over the four runs.†

After training the DGHT model and the SCM, each epiphysis was evaluated independently of any other
epiphysis as follows: (I) The DGHT model for the first zoom level was applied, followed by (II) the application of
the corresponding Random Forest Classifier to calculate the SCM for each of the 50 best localization hypotheses
provided by the DGHT. Based on Equation (7) the best hypothesis was selected. Around this localization result

†Experiments only involving the DGHT (without SCM) do not use a random component and are only performed once.
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Figure 3. Epiphyses considered in this paper together with their identification number (left image) and some examples of
hand-radiographs. Note that only the 12 epiphyses, which are used in this paper have been labeled.

(III) an image patch was extracted on which (IV) the DGHT model for the second zoom level was applied.
(V) The corresponding SCM was calculated again for each of the 50 best localization hypotheses of this level
and the best hypothesis according to Equation (7) was the final result. Note that the exact number of (50)
DGHT localization hypotheses, considered for SCM assessment, had only a minor influence on the classification
performance (see Section 5).

According to Fisher et al.,5 a human observer perceives an epiphyseal localization as correct if the Euclidean
distance to the center is less than 6 pixels for hand-radiographs normalized to an image height of 256 pixels.
Since our images were not normalized and substantially larger, the human observer tolerance threshold was set to
6

256 ·hi pixel in the experiments, with hi being the image height. A localization result with a Euclidean distance
to the annotated point smaller than this threshold was considered as correct. Thus, we define the success rate for
a given epiphysis to be the percentage of images where this epiphysis was correctly localized with our approach.
The mean success rate is just the average of the 12 individual success rates.

4. RESULTS

The experiments showed a mean success rate of 99.4% for the localization of the 12 epiphyses (see Table 1),
using an error tolerance perceived as correct by a human observer. This is a significant improvement of 2.9%
compared to the DGHT baseline result without using the SCM methodology.

The mean localization error over all 412 test images decreased from 14.6 to 6.6 pixel (see Table 1) using the
new SCM technique which enabled a successful localization of all 12 epiphyses in 96.2% of the images (Figure 5).
The worst localization result for a single image on all four test runs still contained 7 successfully localized
epiphyses which is expected to be sufficient for a subsequent automatic bone age assessment step (Figure 4).

5. DISCUSSION

Due to the dependency of the Random Forest tree generation on a random number generator it was necessary to
study its robustness for different random initializations. It turned out that this had little effect on the variance
of the localization result. The mean localization rate over all epiphyses varied only between 99.3% and 99.4%.
Furthermore, 99.2% of epiphyses in all test images were correctly localized in all four test runs. This means that
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Figure 4. The 3 images with the most incorrect localizated epiphyses. The green ”+” is a correct localization. Incorrect
results are marked with a red ”x” and the ID of the epiphyses. Note, on the second image, the epiphysis ”1” and ”2”
were localized at the same position.

Figure 5. Some examples of correct localization results



epiphysis ID ø Error
1 2 3 5 6 7 9 10 11 13 14 15 Mean (Pixel)

DGHT 93.4 94.4 96.8 97.8 96.4 97.1 95.6 98.3 98.8 93.9 96.8 98.1 96.5 14.6
DGHT 99.5 99.1 99.3 99.7 99.3 99.3 99.0 99.5 99.8 99.0 99.3 99.8 99.4 6.6
+ SCM ±.1 ±.1 ±.0 ±.1 ±.0 ±.0 ±.3 ±.2 ±.2 ±.4 ±.0 ±.0

Table 1. Comparison of success rates (%) for epiphysis localization using (1) the standard DGHT, (2) and the DGHT in
combination with the SCM. Results are provided for the considered 12 epiphyses, illustrated in Figure 3. The column
“Mean” provides the average over the individual epiphysis localization results.
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Figure 6. Percentage of cases in which the i-th entry in the N-best list was chosen by SCM (Equation (7))

most of the wrong localization results occurred in all test runs and thus the random number generator had a
negligible influence not only on the mean success rate but also directly on the localization results.

As mentioned before, only the 50 best DGHT-localization hypotheses were used during evaluation. This is
reasonable since the DGHT already achieved a good localization performance of 96.5% so that we assumed that
the correct localization was among the best 50 alternatives. The analysis revealed that in 50% of all cases the
SCM indeed confirms the best DGHT hypothesis. Furthermore, only very few hypotheses (1.5%), that were not
among the 25 best DGHT results, were chosen by the SCM (see also Figure 6). Therefore, it can be assumed
that rating only 50 DGHT hypotheses in the evaluation did not significantly degrade the achieved results.

On a standard PC with x64 Intel Xeon CPU E5-1650 @ 3.2 GHZ and 32 GB RAM the processing time
for the GHT voting procedure, including the selection of the 50 best results from the Hough space, was found
to be 1.5s on average per epiphysis and zoom level. The subsequent generation of the feature vector for the
SCM took 8.9ms and the Random Forest classification additional 9.7ms, while further 0.7ms were required for
other administrative tasks, such as initialization and result sorting. Note that no time measurements have been
conducted for image pre-processing, like edge detection and downsampling, and that no runtime optimization
has been performed, yet. Thus, the overall processing time is only slightly increased by the SCM but results in
a large improvement of the localization performance.

Hahmann et al.19 suggested that considering the GHT voting characteristics based on a single, individual
Hough cell is not robust and may result in overfitting. To analyze this aspect, we set ϑ = 0 in Equation (5).
As expected, the localization rate decreased to 98.0%. At the same time, the processing time for classifying
the feature vectors increased to 31.6ms. This is due to a larger mean tree depth of 72.5 nodes for ϑ = 0
compared to 22.2 nodes for ϑ = 7 (Figure 7). Thus, feature vectors referring to a single Hough cell contain less



Figure 7. Comparison of mean success rate in %, processing time in ms (separately for feature vector generation and
classification), and mean tree depth depending on the maximum neighborhood size ϑ.

information, and in order to achieve a good representation of the training samples, the Random Forest needs a
larger tree depth. At the same time, the test samples are insufficiently represented by the trees resulting in a
worse localization rate. Hence, without including a local neighborhood in the feature vectors of the SCM, the
SCM tends to overfitting .

By contrast, even with a small neighborhood of ϑ = 1, the tree depth reduced to 23 nodes while the
localization rate increased to 98.7%. By using ϑ ≥ 4, the localization rates saturated at approximately 99.3%
but the processing time for generating the feature vectors increased squarely with the maximum neighborhood
size. Thus, a value of 4 or 5 seems to be a good trade-off between localization rate and processing time for the
given task (Figure 7).

The presented localization results can be used for extracting epiphyseal regions of interest, which is required
for subsequent Bone Age Assessment. For instance, this task can be solved by the Classifying Generalized Hough
Transform25,26 or a Support Vector Machine.27–29

6. CONCLUSIONS

A general problem of GHT-based object localization frameworks, dealing with large shape variabilities, is the
independent treatment of model points during the voting procedure. When using a GHT model, incorporating
different target shape variants, points from mutually exclusive variations may vote for the same cell in the Hough
space which may lead to false positive localizations. This problem can be addressed by (1) rating the pattern
of model points, voting for a cell in the Hough space and its neighborhood, with a Random Forest Classifier
and (2) using the derived shape consistency measure to weight the votes in the Hough space. In this work,
we successfully applied the described method to medical image processing. A substantial improvement of the
localization rate from 96.5% to 99.4% could be achieved for the task of extracting the 12 epiphyseal regions
of interest in hand-radiographs of patients with an age range between 3 and 19 years. Since the subsequent
Bone Age Assessment step of the overall system relies on a combined classification of the 12 epiphyseal regions,
the small amount of remaining localization errors is expected to have only a minimal effect on the final system
performance.



Furthermore, we analyzed the dependence of the SCM on the radius of the local neighborhood which is
considered around each Hough cell to analyze the voting pattern. It was found that a non-zero neighborhood is
crucial and that the localization performance is improved with increasing radius. However, also the processing
time of the algorithm increases due to a different depth of the trained Random Forest, so that there is a trade-off.
Optimal values for the radius have been found to be in the range from 4 to 5.
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